FHWA/TPF
Intelligent Compaction Study

By
George Chang, PhD, PE
The Transtec Group
Transportation Pooled Fund #954

“Accelerated implementation of intelligent compaction for embankment subgrade soil, aggregate base, and asphalt pavement material”

3-year IC study for all the above materials

12 participating States

12+ field demonstration
Objectives

- Accelerated development of QC/QA specifications for subgrade soils, aggregate base and asphalt pavement materials
- Develop an experienced and knowledgeable IC expertise base within Pool Fund participating State DOTs
- Identify and prioritize needed improvements to and/or research of IC equipment and field QC/QA testing equipment
Prioritization of IC Improvements

- Simplifying IC usage
- Achieving greater IC value, cost benefit, etc.
- Improved accuracy
Task Working Group (TWG)

Dr. George K. Chang, P.E.
Transtec Group, Inc.
PI

Mr. Jason Dick
Transtec Group, Inc.
Programmer

Dr. Rob O. Rasmussen, P.E.
Transtec Group, Inc.
Project Management Support

Mr. David Merritt and
Mr. Dennis Turner
Transtec Group, Inc.
Technical Writers

Mr. Larry L. Michael
Asphalt Technology Consultants
Co-PI

Mr. Victor Gallivan
FHWA
COTR

Dr. David White
Iowa State University
Co-PI

Mr. Bob Horan
Asphalt Institute
IC Facilitator

IC Roller Vendor
Representatives

Pooled Fund State
Representatives

THE TRANSTEC GROUP
IC Roller Requirements

- Continuous roller-integrated measurement system
- Real-Time Kinematic (RTK) Global Position System (GPS) based mapping
- Real-time onboard display and integrated software reporting system
- (Optional) Feedback control
Participating Soil/SB Rollers

- Ammann/Case
- Caterpillar
- Bomag America
- Dynapac
- Sakai America
Participating Asphalt Rollers

- Ammann/Case
- Bomag America
- Caterpillar
- Dynapac
- Sakai America
Application of Material Types

- Type I: Non-cohesive subgrade soil
- Type II: Cohesive subgrade soils
- Type III: Aggregate base material
- Type IV: Asphalt pavement material
- Type V: Stabilized base material
Correlation Tests

Correlation test strip with 20 in-situ spot test measurement. Can be done after selected roller passes (e.g. 1, 2, 4, 8 passes) to build compaction curve. Also used to establish IC target value.

- **Low temperature area**
- Systematic and random testing for QC

IC Compaction

- Traditional Compaction

Asphalt

- Correlation test strip
- In-Situ Spot tests
- Current Spec
- Target IC MV

THE TRANSTEC GROUP

3-4 roller widths
Correlation Tests

Correlation test strip (~300 ft) with 5 to 10 in-situ spot test measurement
Can be done after selected roller passes (e.g. 1, 2, 4, 8 passes) to build **compaction curve**. Also used to establish IC target value.

- **IC Compaction**
- **Traditional Compaction**

Random testing

- Identified by IC machine QC that are below target value, i.e. less QA testing!
- Only spot test areas
- Correlation test strip (~300 ft) with 5 to 10 in-situ spot test measurement
- Can be done after selected roller passes (e.g. 1, 2, 4, 8 passes) to build compaction curve. Also used to establish IC target value.

In-Situ Spot tests

- Current Spec
- Target IC MV

Soil/SB
In-Situ Testing Methods

Which tests can be used as companion tests to RMV?

- Impact Force From Rollers
- LWD/FWD
- LWD
- Nuclear Density Gauge
- Dynamic Cone Penetrometer

Influence depths are assumed ~ 1 x B (width)

Distance = Roller travel in 0.5 sec.

Area over which the roller MV's are averaged

Courtesy of Dr. David White
In-Situ Test Methods for HMA

NG

LWD-a

NNG

PSPA

THE TRANSTEC GROUP
In Situ Test Methods for Soils/SB/STB
Key Findings

- Values of mapping existing support before construction or overlay
- Significant improvements of rolling patterns, thus, consistent products
- Improvement of roller operators’ accountability
Key Findings (cont’d)

- Construction process-control greatly improved
- IC-MVs correlate to various in-situ point measurements
- Measurement influence depth varies depending on technology and site conditions
- Machine operation parameters influence MVs
The Transtec Group

Premature Failure

Approximate location of subgrade section failed during test rolling (~ Sta. 134+00 to 144+00)

Approximate location of HA+MA non-wearing course layer failure due to construction traffic (~ Sta. 140+12 to 142+61)

HMA Map

Subbase Map
Mapping STB

Mapping w/ Sakai double-drum IC roller

TB 2C-2 TB 2C-1

TB 2A-1
TB 2A-2
TB 2A-3

TB 2B-1 TB 2C-1
TB 2B-2 TB 2C-2

Graph: CCVs

TB02A (5-day cure) TB02B (6-day cure) TB02C (7-day cure)
Mapping
Milled ACP

Sakai CCV

North

Lane 1

Shoulder

Semi-variogram for CCV

Bridge

Kridging Map

Exponential Model
Nugget = 300
Sill = 350
Range = 65
Accessing Uniformity

TB 03B SMA overlay (distance 0 to 684 m)

Semi-variogram - exponential model

Column: CCV
Direction: 0.0
Tolerance: 90.0

Nugget=16.5
Sill=28.5
Range=40

Surface Temperature

SAKAI CCV
Improved Rolling Pattern

Before

After

Sakai Double-drum IC roller

TB04

TB05
IC Clearing House

www.IntelligentCompaction.com